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Abstract

As climate change leads to increasingly erratic weather patterns, how will households

reliant on rainfed agriculture adapt to this growing uncertainty? I investigate how expo-

sure to climate instability, defined as the year-to-year change between dry and wet con-

ditions, affects households’ financial coping strategies. Using detailed individual-level

data on financial inclusion across 29 low-income countries, I find that a one standard

deviation increase in climate instability increases the propensity for households to save

by up to 7%. This is driven primarily by rural households with low education, who

are the most dependent on rainfed agriculture. Saving increases only during wet years,

when households attain an agricultural surplus, and the reason for saving is deliberately

precautionary, in anticipation of a future negative income shock. Consistent with this

finding, lagged climate instability successfully predicts current climate shocks, which

suggests that the elicited saving behavior is a rational adaptation. Using household

panel data, I find that the increase in saving during wet years is attained through a

decrease in non-food expenditures, and this successfully protects against the threat of

food shortages. However, uptake of formal financial services is limited, and instead

most adaptation is facilitated through community groups and informal networks. Ad-

dressing the gaps in financial inclusion and financial literacy may thus be crucial to

further increase the resilience of poor rural households against the looming threat of

climate change.
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1 Introduction

Rural households in low-income countries represent some of the world’s most financially

vulnerable. Most of these households rely on rainfed agriculture, with rates of up to 92% in

Sub-Saharan Africa (Bruinsma, 2017). This makes them exceptionally vulnerable to climate

shocks such as droughts, and climate change, which is expected to dramatically increase

rainfall volatility (Wasko et al., 2021). Poor rural households also tend to be financially

excluded, with little access to formal banking, credit or insurance, despite the potential

massive welfare benefits these services could entail.

We still have very limited knowledge about how exposure to climate uncertainty affects

households’ ex-ante financial coping mechanisms, such as precautionary saving.1 In this

paper, I investigate how poor rural households cope with climate uncertainty through saving,

credit, and insurance. I introduce a novel measure of climate uncertainty – climate instability

– that captures year-to-year shifts in climate conditions. Using three datasets from low-

income countries, with analyses at the country, district, and household levels, I find that

exposure to climate instability leads to increased saving and credit uptake. Heterogeneity

analyses show that this is driven specifically by rural households with low levels of education.

Households adapt to climate instability by increasing their savings propensity and uptake of

credit in “good” (wet) years, and dissave in “bad” (dry) years. I find that exposure to climate

instability, through its positive effects on precautionary savings, ultimately reduces the risk

of food shortages, suggesting that the increase in savings propensity from exposure to climate

instability may be welfare-increasing.

To motivate how households choose to consume and save, I set up a two-period op-

timal consumption model. Households are assumed to be risk-averse, which implies that

aggregate utility is maximized when consumption is smoothed over the two periods. House-

holds generate income from agricultural production, which is assumed to be a function of

climate inputs such as precipitation and evaporation. I measure climate inputs using the

Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano, Begueŕıa and

López-Moreno, 2010; Begueŕıa et al., 2023). Arguably, the SPEI is preferable to rainfall or

temperature measures, since it captures the combined effects of rainfall and temperature on

plant growth potential, and has been shown to be more informative for crop production than

rainfall or temperature alone (Kubik and Maurel, 2016). Using a global panel on crop pro-

duction, I confirm that this index is an important determinant of the total production of the

six most important staple crops in low-income countries.

1 Most of the literature use rainfall variability as the primary measure of climate uncertainty, and have so
far found inconclusive effects on saving, consumption, and credit (Paxson, 1992; Alem and Colmer, 2022;
Abay et al., 2022).
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Since future climate realizations are unknown, income for period two in the model is in-

herently uncertain. Using an exponential utility functional form, I show that households must

subjectively estimate future climate uncertainty to optimally choose how much to consume

and save today, an estimate which I argue will be based on subjective experience of recent

climate uncertainty. I use two measures of climate uncertainty, climate variability, defined as

the standard deviation of the SPEI over the past five years, and climate instability, defined

as the average absolute difference in yearly SPEI values, over the past five years. In contrast

to climate variability, climate instability captures the order and structure of recent climate

shocks. I argue that this measure is better rooted in the behavioral literature on how avail-

ability bias, contrast effects, and salience affect our perception of experienced events (Tversky

and Kahneman, 1973; Bordalo, Gennaioli and Shleifer, 2022). Using data from the Tanzania

National Panel Survey, I confirm that exposure to climate instability acts as a more salient

measure of subjectively experienced climate uncertainty than climate variability.

For my main outcomes I rely on large-scale household finance survey data from the Fin-

Scope National Surveys (FinMark Trust, 2022). These are nationally representative surveys,

carried out since 2006, with the aim of improving the state of knowledge of financial inclusion

in low-income countries, primarily in Sub-Saharan Africa and South Asia. My three main

outcomes are whether a household i) saves (and through which means), ii) has any credit,

and iii) is insured. Descriptive statistics reveal that most households still lack access to both

credit and insurance, implying that consumption smoothing through precautionary saving is

still the most common financial coping strategy in my sample.

Motivated by how memory decays following traumatic natural disasters (Atreya, Fer-

reira and Michel-Kerjan, 2015) and following the literature on climate variability (Alem and

Colmer, 2022), I use climate exposure over a 5-year window as my preferred specification. To

disentangle the effects of climate uncertainty from any first-order income effects or systematic

differences between districts, I control for the occurrence of droughts and SPEI realizations

over the same period, and long-run climate characteristics. Since most countries are surveyed

only once, my main specifications rely on a cross-sectional approach, where I exploit within-

country short-term deviations in climate instability and variability from the long-term mean

as treatment.

I find that climate instability has statistically and economically significant positive effects

on saving. In contrast, I find no evidence for an effect from climate variability on any of the

outcomes, similar to Paxson (1992). My preferred specification shows that a one standard

deviation increase in climate instability leads to a 5% increase in savings propensity (3 pp)

for rural households. This is entirely driven by places experiencing “wet” conditions, where

the savings propensity increase by 7% (4 pp). Importantly, I find that exposure to climate
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instability seems to be predictive of a drought in the subsequent year, indicating that the

households’ heuristic strategy may indeed be a rational adaptation. Furthermore, I find no

effects in urban areas, and the positive effect on savings only holds for individuals with no

or low skills, as proxied by their education levels, who are more likely to work in agriculture.

In addition, I find significant positive effects on the use of credit, but relatively precisely

estimated null effects for insurance.

The identifying assumption of my main specification is that climate instability does not

correlate with other unobserved variables that vary at the region level and also affect the out-

comes. This is arguably a strong assumption, since exposure to climate uncertainty might

affect the sample composition through e.g. inter-regional migration. I examine this in two

ways. First, I find that within countries, recent climate instability is completely uncorre-

lated with indicators of compositional change, such as education, age, and urban locations,

suggesting that climate instability may provide a source exogenous variation, even with a

cross-sectional specification. Introducing informative covariates into the specification also

has limited impact on the coefficient of interest, suggesting that selection on unobservables is

unlikely (Oster, 2019). Second, I construct a global panel on inter-regional migration using

data from Niva et al. (2023) and find precise null results of my climate uncertainty mea-

sures on migration. In addition, the main results are robust to outliers (iteratively excluding

countries), and to clustering at more aggregated levels which take into account potential

large-scale spatial correlation of climate shocks.

To investigate the underlying mechanisms, I build a panel data set at the district-level

for Tanzania, one of the few countries with repeated observations in the FinScope dataset.

These data are georeferenced at the lower district level, and includes detailed data on type

of occupation and the stated reason for saving. This allows me to investigate farming house-

holds specifically, while controlling for district fixed effects and relying on a parallel trends

assumption. This analysis yields almost identical results: a one standard deviation increase

in climate instability increases savings propensity by 6%. I find that this is driven entirely by

farming households, and that virtually all of the increase is due to precautionary savings for

emergency use. This indicates that farmers adopt a deliberate coping strategy to deal with

future shocks, rather than through a latent change in time preferences. These results are ro-

bust to heterogeneous and dynamic treatment effects (De Chaisemartin and d’Haultfoeuille,

2020).

Lastly, I use a household panel from the Tanzania National Panel Survey, covering ap-

proximately 5,000 households over the period 2008-2014. Using within-household variation

to control for unobserved heterogeneity at the household level, I first show that climate in-

stability does not increase the probability of migration, consistent with the global migration

3



analysis. I then replicate my main finding in the global analysis, that climate instability

leads to more saving, and specifically for emergency reasons. I find that households exposed

to climate instability face a significantly smaller risk of food shortage, likely because of the

increase in precautionary savings in good years. Consistent with this, I find that during

good years, households who faced climate instability increase the total value of their assets

less, suggesting that despite receiving a surplus income from agricultural production, they

increase their consumption of durables to a lesser extent, which in turn leads to less risk of

food shortage in drought years.

The main contribution of this paper is the introduction of climate instability as an im-

portant predictor of saving and credit uptake among poor rural households. The previous

literature on ex-ante risk mitigation among poor rural households instead focuses on rain-

fall variability, and the evidence so far has been inconclusive, and sometimes even counter-

intuitive (Paxson, 1992; Rosenzweig and Binswanger, 1993; Alem and Colmer, 2022; Abay

et al., 2022). This paper is most closely related to Paxson (1992), who hypothesizes that

exposure to rainfall variability should increase saving, but surprisingly finds no relationship

between saving and past exposure to rainfall variability in a sample of rice farmers in Thai-

land. The paper further relates to Alem and Colmer (2022), who find that exposure to

climate variability over the past five years leads to a decrease in consumption, and from this

infer an increase in precautionary savings, which they unfortunately cannot test. Rosenzweig

and Binswanger (1993) find that past rainfall variability changes the composition of farm-

ers’ assets, such that both mean income and income variability are reduced, which perhaps

could explain the null results of Paxson (1992). Lastly, Abay et al. (2022) find that rainfall

variability negatively affects credit demand among Ethiopian farmers. In contrast, I find

that climate instability has a positive effect on credit uptake in a global sample of rural

households, suggesting that the way in which climate uncertainty is measured matters. A

potential limitation of previous studies is that they rely on variation in rainfall,2 while plant

water availability is ultimately determined by the combination of precipitation and evapora-

tion. Kubik and Maurel (2016) find by using the SPEI that rainfall and temperature jointly

drive agricultural production, of which the most important component is temperature. Con-

sistent with this, Aggarwal (2021) finds that variability in temperature dominates rainfall

in explaining effects on consumption among Indian farmers. By using the SPEI to measure

climate uncertainty, I am able to jointly capture precipitation and evaporation effects and

thus improve on previously used rainfall variables.

The paper further contributes to a larger literature on climate and households’ financial

coping strategies by using novel Finscope data, which enables me to look explicitly at a key

2 Alem and Colmer (2022) control for temperature variability, but the treatment variable is rainfall variability.
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ex-ante consumption smoothing mechanism: precautionary saving. Similar to Udry (1995), I

find that households use precautionary saving in anticipation of a negative income shock in the

near future. Previous research generally focuses on how households cope with negative income

shocks ex-post, through the drawing down of assets (Carter et al., 2007; Janzen and Carter,

2019), livestock (Fafchamps, Udry and Czukas, 1998; Kazianga and Udry, 2006), and grain

stocks (Udry, 1995; Cui and Tang, 2024), and by increasing hours worked (Kochar, 1999),

reducing investment in children (Jacoby and Skoufias, 1997; Maccini and Yang, 2009), relying

on remittances (Yang and Choi, 2007; Jack and Suri, 2014), or alternatively have tried to infer

precautionary saving from reported changes in consumption (Janzen and Carter, 2019; Alem

and Colmer, 2022). The rapid development of mobile money services provides farmers in

low-income countries with important new opportunities to cope with income shocks through

cash savings instead of other types of saving (Jack and Suri, 2014; Suri, 2017), which is the

focus of this paper. Consistent with this, I find that exposure to climate instability leads to

an increase in saving for emergency reasons among mobile money users in Tanzania.

Finally, I contribute to the literature by providing generalizable results. This is the largest

study to date on how poor rural households cope with climate uncertainty through financial

means, with the data covering 29 countries, 42 survey waves, and 223,000 individuals, over

the period 2006-2022. Previous work has instead relied on smaller samples and individual

countries, such as national panels from Burkina Faso (Fafchamps, Udry and Czukas, 1998;

Kazianga and Udry, 2006), China (Yang and Choi, 2007), Ethiopia (Alem and Colmer,

2022), India (Rosenzweig and Binswanger, 1993; Cole et al., 2013; Bjerge and Trifkovic,

2018), Nigeria (Udry, 1995), and Thailand (Paxson, 1992). By using a global sample with

rich heterogeneity across climate regimes and levels of development, I show that this is a

universal phenomenon among poor rural households that is not driven by any particular

location.

The next section provides background on rainfed agriculture and financial inclusion in low-

income countries, together with my theoretical model and the hypotheses it predicts. Section

3 introduces the data, empirical strategy and identifying assumptions. Section 4 presents

the main results and section 5 the mechanisms. Section 6 presents robustness checks, while

section 7 concludes with policy implications.

2 Consumption Smoothing and Climate Anticipation

2.1 Background

Most of the agriculture in the developing world is rainfed, with rates more than 95% in

Sub-Saharan Africa, 70% in North Africa, 90% in Latin America, and 60% for South Asia
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(FAOSTAT, 2005). In addition to a low baseline income, high reliance on rainfall makes

households in these regions particularly vulnerable to climate shocks, which will likely only

increase with climate change (Wasko et al., 2021). These regions are also characterized by

large yield gaps due to under-investment in agricultural inputs (Molden et al., 2011), which

might be worsened by exposure to climate risks due to an unstable climate (Molden et al.,

2011). For example, while the total cultivated area of main cereal crops, such as maize, millet

and sorghum, in Sub-Saharan Africa has doubled since the 1960s, the yield has remained

largely unchanged (Molden et al., 2011).

Among the many margins that rural households can use to smooth their income and con-

sumption, the most straightforward mechanism, especially for credit-constrained households,

is through building buffer savings in years of agricultural surplus (Deaton, 1989; Karlan,

Ratan and Zinman, 2014). However, most rural households in developing countries still lack

access to formal bank services (World Bank, 2023), leading to a greater adaptation of informal

services, which can come with higher risks and costs (Karlan, Ratan and Zinman, 2014).

One common method of risk-sharing is through communal saving cooperatives, such as

rotating savings and credit associations (ROSCAs).3 ROSCAs are incredibly common in Sub-

Saharan Africa, with membership rates between 50 and 95 percent, and are often the only

available saving and credit institution in rural areas (Anderson and Baland, 2002). Members

in ROSCAs regularly contribute a fixed amount of money to a common fund, and at each

meeting, the pooled funds are given to one member, rotating until everyone has received the

lump sum once. In the face of income shocks like droughts affecting agriculture, ROSCAs can

provide a financial safety net for members. The lump sum received can be used to cope with

the immediate financial strain, such as purchasing food, seeds, or other necessities, thereby

offering temporary relief and helping members manage the economic impact more effectively

(Beaman, Karlan and Thuysbaert, 2014).

In addition, the mobile technology revolution is rapidly increasing access to financial

services, and Sub-Saharan Africa already reports having the highest mobile money account

access in the world. This is important, as Jack and Suri (2014) show that mobile money

users are less affected by negative income shocks, through their ability to receive remittances

from family members and friends. At the same time within-country gaps in financial inclusion

between men and women, the rural and urban, and the wealthy and poor are still considerable

(Demirguc-Kunt et al., 2018).

In the following section, I set up a simple model of how a rural household deriving most

of its income from agricultural production might choose how to optimally consume and save

due to future income uncertainty stemming from climate shocks.

3 In the subsequent empirical analysis, I categorize this type of saving as informal saving.
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2.2 A Two-Period Optimal Consumption Model with Uncertain Future Income

To model the intertemporal decision-making of households, I follow Bowman, Minehart and

Rabin (1999) who set up a two-period optimal consumption model, where income in period

two is uncertain. I assume that agents are risk-averse, such that u′(c) > 0 and u′′(c) < 0.

The agent’s optimization problem can be written:

max
c0

U(c0, c1) = u(c0) + βu(c1)

subject to:

c0 = y0 − s0

c1 = y1 + (1 + r)s0

Where U is aggregated utility, 0 < β ≤ 1 a discount factor, c0 and c1 consumption in the

current and future period, y0 and y1 income in the current and future period, and s0 savings

in the current period. The agent faces the problem of how much of today’s income y0 should

be saved to maximize aggregate utility U . This yields the well-known Euler consumption

rule:

u′(c0) = β(1 + r)u′(c1) (1)

I assume that households derive their main income y from agricultural production, which

depends on inputs such as labor L, capital K, cultivated area A, and weather W :

y = f(L,K,A,W, ...)

Since weather in the future period, W1, is inherently uncertain, future income y1 will

be outside the control of the individual farmer. Since most agriculture in this context is

rainfed, and soil moisture is a necessary condition for plant growth, there is likely little

to no substitutability between weather and other factors of production. Hence, production

approximates a Leontief production function:

yt = min

(
Wt

a
,
Zt

b

)
where Zt represents all other factors of production, and a, b are technological parameters.

Assuming that climate can be modelled as a stochastic function with a normally distributed

error term, representing random variation in available soil moisture from fluctuations in pre-

cipitation and evapotranspiration over time, production, and hence income, can be expressed
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as4:

yt = min

(
W̄ + ϵt

a
,
Zt

b

)
, ϵt ∼ N(0, σ2

w)

If weather is a binding constraint for production, i.e. W̄+ϵt
a

< Zt

b
, which is likely during

dry conditions and periods of excess labor supply, income in period t can be expressed yt =

ȳ+ϵt/a, where ȳ represents long-term average income. For ease of exposition, I follow Merton

(1975) and use an exponential utility formulation5: u(c) = (1 − e−αc)/α with α > 0, which

results in the following expression for E[u(c1)]:

E[u(c1)] = 1− e−α(ȳ+(1+r)s0−α
2
σ2
w)

Using the Euler optimal consumption rule in equation (1), with the future utility term

replaced by its expectation, I arrive at the optimal savings rate s∗0:
6

s∗0︸︷︷︸
Optimal savings

(2 + r) = y0 − ȳ︸ ︷︷ ︸
Current surplus

+
ασ2

w

2︸︷︷︸
Risk aversion

+
ln(β(1 + r))

α︸ ︷︷ ︸
Discounted return

(2)

Optimal savings today will depend on three different aspects captured by each of the terms

above, which will motivate my hypotheses. First, when current agricultural surplus is high

following a positive climate shock, saving should increase. Second, since agents are risk-averse,

saving should increase with the degree of risk aversion α and climate variability σ2
w. The

third term, capturing the effect of the discounted return of saving, is of less relevance to this

analysis, since it will not be affected by climate variation, and in addition will approximate

zero whenever β(1 + r) ≈ 1. Interestingly, I arrive at a linear relationship between savings,

current surplus, and risk aversion, which is precisely the relationship that is assumed in

Paxson (1992) to motivate the econometric specifications therein.

4 In an empirical exercise, I validate and use the Standardized Precipitation-Evapotranspiration Index over
the last 12 months as my main measure of a climate shock. The empirical distribution of the SPEI,
designed to have a mean of 0 and a standard deviation of 1, in my sample reassuringly approximates a
normal distribution.

5 Exponential utility implies constant absolute risk aversion, meaning that risk aversion does not change with
wealth. This is often considered unrealistic, however, in this context, most households of interest are at
very low (subsistence) levels of consumption, and an exponential utility model will at these lower levels of
consumption be indistinguishable from e.g. a CRRA model. As demonstrated by Leland (1968), a CRRA
model—or any model with prudent agents—predicts that precautionary saving will increase with future
income uncertainty.

6 See Appendix B.1 for the full proof.
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2.3 Estimating Climate Risk from Past Experience

How do households estimate climate variability? A growing literature evaluates how rural

low-income households perceive climate change, and has found that climate perceptions are

often inconsistent with observed trends over longer periods (De Longueville et al., 2020),

and typically biased towards more recent and extreme events (Marx et al., 2007), and events

that have a direct impact on livelihoods (Akponikpè, Johnston and Agbossou, 2010). This

is consistent with a rich behavioral literature suggesting that individuals tend to overweight

recent events more, through availability and recency bias (Tversky and Kahneman, 1973).

This suggests that households’ estimate σ̂2
w based on subjective experience over a recent time

window.

While a variability measure such as the standard deviation of recent shocks might seem

like an obvious choice, this measure actually neglects how the shocks are structured and

ordered, which may be of importance for individuals’ subjective experience. Consider the

four hypothetical cases of climate realizations over a five-year period in Figure 1. All cases

have been normalized to have the same mean and standard deviation (variability), yet they

will arguably have very different effects on the subjective experience of individuals facing

these shocks. In cases a) and b), dry and wet years are interleaved, such that the year-to-

year differences are high. I classify these as having high climate instability. In cases c) and

d), variability over the time window is just as high, but here the climate changes smoothly

year to year, meaning that they instead have low climate instability. Because they all have

the same standard deviation, the variability measure is unable to differentiate between these

scenarios.

There are several reasons why this would matter for an individual’s subjective estimate

σ̂2
w. First, there is a rich behavioral literature on “contrast effects”, where an experience

will stand out more if it is compared to more dissimilar experiences (Simonson and Tversky,

1992). In this setting, experiencing a drought after a wet year may make both experiences

more salient (Bordalo, Gennaioli and Shleifer, 2022), leaving a stronger impression on the

need for precautionary saving. I later test and show that this is indeed the case – individ-

uals who faced higher climate instability are more likely to report having experienced more

severe shocks, conditional on actual climate shocks, while I do not find the same effect from

variability. Additionally, if utility is experienced relative to a recent reference point (Tver-

sky and Kahneman, 1991), such as the previous year, high climate instability will lead to

larger utility losses relative to when the climate changes smoothly between years,7 and the

7 Using the same exponential utility form as in Section 2.2 and focusing on year-to-year losses in utility, cases
a) and b) would dominate case d) in terms of both the sum of utility losses and magnitude of the losses,
whereas case c) does not experience any utility loss at all.
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Figure 1: Hypothetical climate realizations representing high and low climate instability

Notes: This figure shows four hypothetical realizations of climate outcomes over a recent 5-year period,
where all the cases have identical mean (0) and standard deviation (1). Year 0 indicates the climate real-
ization over the past 12 months. Climate realizations are represented by the Standardized Precipitation-
Evapotranspiration Index (SPEI).

behavioral literature suggests that losses matter more than gains (Tversky and Kahneman,

1992).

Second, agricultural surpluses should mechanically increase savings, as shown in Equa-

tion (7), and repeated interleaved shocks, where precautionary savings repeatedly are built

up and consumed, may in turn encourage habit formation in saving (Carroll, Overland and

Weil, 2000; Alessie and Teppa, 2010).

Third, high climate instability may undermine farmers’ adaptation to a changing climate,

since adopting more drought-tolerant crops may backfire when the next year turns unexpect-

edly wet. Evidence from Ethiopia shows that while access to climate information is one of the

most important drivers of farmers’ adaptation to climate change, unpredictable weather is a

key barrier (Marie et al., 2020). Hence, climate that changes smoothly over time will likely

help ease adaptation and hence reduce the need for precautionary saving, versus climate that

changes erratically.

Fourth, it may well be that individuals learn of local climate regimes and use this to

predict next year’s climate. I find evidence that past climate instability does indeed increase

the risk of a climate shock in the current period, both in the positive and negative direction,

suggesting that farmers may increase their savings in anticipation of an expected future shock.
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Based on the above, my main hypotheses are thus that: i) households save more during

wet years, when there is an agricultural surplus, ii) households save more during periods of

high climate instability, iii) the effect of climate instability on savings should mostly occur

in wet years, since households would be expected to consume their savings in dry years, and

iv) that these effects should be driven by low-skilled labor in rural areas, who are more likely

to derive their income from agricultural production. In Section 3.3 I describe the climate

data and definitions I use for climate variability and instability to empirically test these

hypotheses.

3 Data and Empirical Strategy

For my empirical analysis, I construct five datasets on: household finance, household con-

sumption, climate, agricultural production, and migration, each described separately below.

3.1 Household Finance Survey Data: the FinScope Surveys

3.1.1 Global Dataset

The main purpose of this paper is to investigate how climate uncertainty affects households’

saving behavior. To this end, I use the FinScope National Surveys, carried out by the FinMark

Trust (FinMark Trust, 2022). The Finscope National Surveys are nationally representative

surveys, carried out since 2006 in low-income countries in primarily Sub-Saharan Africa,

South Asia, and Southeast Asia. Their aim is to provide insight into financial literacy and

inclusion in poor countries, and provides an unprecedented detail into households’ financial

literacy and access. These surveys have so far received little attention in the economics

literature, and have mostly been used in descriptive work documenting the progress towards

financial inclusion in the surveyed countries.8

The FinScope survey data contains questions on to what extents household use financial

services, such as saving accounts, credit and insurance, and which providers they rely on

(formal, informal, or family and friends). To build the dataset, I use all available data9,

but exclude small island states, unavailable datasets and surveys that are not georeferenced

at the admin 1-level or lower. This results in a sample of 223,670 individual observations,

spanning 29 countries, 42 waves, and 16 years, over the period 2006-2022. For a full list of

countries and years included in my analysis, see Table A.1.

8 See Honohan and King (2012) and Ouma, Odongo and Were (2017) for some applications of these datasets.
9 The survey data can be accessed at: https://finmark.org.za/data-for-financial-markets.
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Figure 2: Geographic coverage of the FinScope national survey data

Notes: Each country in the dataset is identified by a unique color. The region boundaries within each country
indicate the aggregation level of the climate data.

My main outcomes for financial coping strategies are:

Saved in past 12 months – Whether a household saved in the past 12 months.

Has loans – Whether an individual currently has any loans.

Has insurance – Whether a household has insurance or not.

In addition, the survey data includes important individual characteristics such as age,

gender, level of education, occupation and an urban indicator.

3.1.2 Tanzania District Panel

While most countries have been surveyed only once, Tanzania has been surveyed four times

(2006, 2009, 2013 and 2016), and furthermore identifies the location of surveyed households

down to the district (admin 2) level.10. This allows me to use a difference-in-differences

strategy, exploiting sub-national variation in climate uncertainty over the survey periods. In

total, this yields 22,103 observations clustered in 169 districts, across three waves spanning

over 13 years. I use this dataset to examine the effect on saving and to explore the mechanisms

underlying this effect. First, I am able to directly identify farming households. Second, the

10The 2013 wave only contains information at the less granular region level, and is thus excluded from the
analysis. The survey data for Tanzania can be accessed at: https://finmark.org.za/data-portal/TZA
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surveys within each country are more harmonized, which allows me to identify the reasons

why households save. Specifically, I use the following variables as outcomes:

Save for emergency reasons – Whether a household saved specifically due to emergency

reasons in the past 12 months.

Save for other reasons – Whether a household saves for reasons other than emergencies in

the past 12 months.

Member of a savings group – Whether an individual is a member of an informal savings

group.

3.2 Household Consumption Panel: Tanzania National Panel Survey

To further strengthen identification and examine mechanisms more closely, I complement the

Tanzania district panel with household panel data from the Tanzania National Panel Survey

(NPS), specifically the harmonized dataset covering the period 2008-2015 provided by the

World Bank (World Bank, 2021).11 The Tanzania NPS is a longitudinal survey conducted

by the National Bureau of Statistics in Tanzania. The survey aims to provide comprehensive

data on household welfare, consumption, and other socio-economic indicators. The uniform

dataset from 2008-2015 comprises panel data collected from a nationally representative sam-

ple of households across Tanzania. This enables me to look into whether a household moved

following climate uncertainty, important for identification, as well as mechanisms such as

consumption. I use the following variables as outcomes:

Reported climate shock severity – An index from 0 to 3 representing the severity of a recently

experienced climate shock (drought or flood). 0 indicates no shock at all, while 3 indicates

maximum severity.

Log Assets – Log of the estimated current market value of household assets, if they were to

be sold today.

Food shortage, last 12 months – Whether the household faced a shortage of food in the last

12 months.

Ever moved – Whether the household ever relocated between survey waves.

3.3 Climate Data: SPEIbase

To measure plant water availability, drought incidence, climate variability and climate insta-

bility over the survey periods I use the Standardised Precipitation-Evapotranspiration Index

11The dataset can be accessed here: https://microdata.worldbank.org/index.php/catalog/3814.
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(SPEI) from SPEIbase, using data for the entire world for the period 1996-2022.12 This

long-term climate database contains gridded data on drought conditions for the entire world,

at a spatial resolution of 0.5 decimal degrees and time scales ranging from 1 to 48 months,

covering the period 1901-2023 (Vicente-Serrano, Begueŕıa and López-Moreno, 2010). This

makes it suitable for sub-national analysis, even down to the district (admin 2) level.

The SPEI consists of two main components, precipitation and evapotranspiration (de-

rived from temperature). As such, it is widely widely used for drought-monitoring around the

world, and is especially suitable for studying the effect of global climate change on droughts

(Begueŕıa et al., 2014). The SPEI is in essence a standardized time series of water availabil-

ity, with mean 0 and standard deviation 1.13 Negative values indicate dry conditions, and

typically values below -1 are used to indicate droughts.

Using SPEI over rainfall or temperature alone provides several advantages. First, this in-

dex represents globally harmonized weather data, and adjusted to local grid cell conditions,

enabling comparisons between locations and time periods. Second, in addition to precipita-

tion it also takes into account evapotranspiration, hence providing a net measure of of water

availability in the soil. For agriculture, especially for rainfed smallholders, the resulting soil

moisture from the interaction of rainfall and evapotranspiration is the crucial constraint for

crop production, not rainfall per se. Indeed, Kubik and Maurel (2016) evaluates the SPEI

for agricultural production in Tanzania, and finds that SPEI 12 m is the most important pre-

dictor of agricultural production. In contrast, variation in rainfall is of less importance, and

instead, in the context of Tanzanian agriculture, temperature shocks that drive differences

in evapotranspiration are more important. SPEI naturally captures both of these effects

through variation in net water availability. Third, while a large literature have used single

indicators of drought, typically rainfall14 or temperature15, the recent economics literature

has turned towards multi-variable drought indicators16, such as the SPEI, which enables a

direct comparison of my findings with theirs.

To construct the climate variables, for each observation, I extract climate data in 12-month

periods prior to the date of observation17, I compute country-, region-, and district-level. I

12The most recent dataset can be accessed here: https://spei.csic.es/spei database.
13For more details on the definition and derivation of the index and parameter values, see: https://spei.csic.
es/home.html.

14This literature typically use a standardized precipitation index and examples include Maccini and Yang
(2009), Dinkelman (2017) and Shah and Steinberg (2017)

15Examples include Adhvaryu, Fenske and Nyshadham (2019) and Jessoe, Manning and Taylor (2018)
16See e.g. Couttenier and Soubeyran (2014) who propose using the Palmer Drought Severity Index, a measure
that essentially aims to capture soil moisture, and Harari and Ferrara (2018) and Kubik and Maurel (2016)
who use SPEI similar to this paper.

17In all my survey data, I have either an exact date or month of observation, such that I can compute
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then compute district-level average SPEI-values, such that each district d is assigned an

SPEI value SPEId,y for each year from 1996 to 2018. This enables me to look at the effects

of climate uncertainty going back 10 years prior to the first survey date. I can then use

these yearly values to construct treatment variables over 5-year periods, to analyze whether

households are affected by recent exposure to climate uncertainty18. While the specific choice

of time window is somewhat arbitrary, a 5-year window is likely near the preferred window

size. First, a shorter window such as 3 years will most likely capture individual shocks rather

than the pattern of shocks, which I control for regardless, and a longer window such as 20

years will likely result in little variation between regions, as the measure regresses to the

mean over time. Second, a literature looking into how people’s memories of natural disasters

such as floods decay over time has found that most decay seems to occur within 3-4 years

(Atreya, Ferreira and Michel-Kerjan, 2015). While this context is slightly different, both

types of events still associate with monetary losses stemming from climate shocks. Hence,

a window of 5 years would capture the lingering effects of climate shocks. Third, a 5-year

window would be consistent with a recent economics literature on climate variability, making

my findings more comparable to the existing literature (Alem and Colmer, 2022). I also test

robustness to longer time windows and I find that the results still hold for a 10-year window,

although with slightly smaller effect sizes.

Specifically, the following climate variables are used in the analysis:

SPEI12m – The 12-month SPEI aggregated at the country-, region-, or district-level.

Drought12m – A binary indicator equal to 1 if SPEI12m < −1, representing conditions drier

than 1 standard deviation below the local mean.

Climate variability5y – The standard deviation of {SPEI12m, ..., SPEI48−60m}, the last five

years of yearly SPEI values. This measure is used to capture the effects of an increasing

dispersion of water availability relative to the long-term local mean.

Climate instability5y – Defined as the average absolute difference in the SPEI between each

year in {SPEI12m, ..., SPEI48−60m}. This measure is used to capture the effects of climate

instability, by focusing on the year-to-year variation. Since it correlates strongly with climate

variability, I residualize the average absolute differences on climate instability and yearly SPEI

values over the last five years to create a climate instability index that is orthogonal to climate

variability.19

the climate conditions in 12-month intervals preceding this date. For agricultural production data, which
records the total harvests per calendar year, I use calendar year averages.

18I have initially restricted this analysis to 0-5 and 5-10 years prior to the survey date, and I let district fixed
effects capture the remaining climate characteristics prior to these periods.

19More formally, I run the regression ClimInstabry = α1
c +α2

y +
∑5

i=1 βiSPEIiry + γClimV arry + εry where
the residuals from this regression constitute my Climate instability index. See section 3.7 for more details.
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3.4 Agricultural Production Data: FAOSTAT

To validate the SPEI for agricultural production and analyze to what extent past climate may

affect current production, I use global data on yearly agricultural production and yields at

the country-level from FAOSTAT (Food and Agriculture Organization of the United Nations,

2024). This dataset contains statistics for 278 agricultural products, and I focus on the six

most important food crops in low-income countries: maize, rice, cassava, sorghum, millet,

and wheat. For rice, I focus on the share produced through rainfed agriculture. I use all

available data for the period 2000-2022.

To match climate data to agricultural production, I use SPAM 2005 (Spatial Produc-

tion Allocation Model) (You et al., 2014), which provides a global gridded distribution of

agricultural production for 42 major crops, representative of 2005. This should arguably be

representative of agricultural production for the period 2000-2022, while mostly be unaffected

by climate variation during this period. Visual inspection shows that the six included food-

crops tend to be clustered in different parts of different countries, largely depending on their

respective climate and soil requirements. Hence, while agricultural production is observed at

the country level, variation in the country-crop data is driven by sub-national variation in

experienced climate. To construct the treatment variables, I aggregate the climate treatment

variables at the country × year × crop level, by creating yearly weighted averages, where

the weight represents the share of the physical area for each crop in a grid cell relative to the

country total.

In addition to spatial climate variation, crop growth will also depend on rainfall variability

within each 12-month period. One way to take this into consideration is to construct crop-

specific calendars for each country (Von Uexkull et al., 2016). However, I argue that this

potential imprecision is unlikely to be problematic for my analysis. Growing seasons for crops,

especially in areas of rainfed agriculture, largely follow the local rainy seasons, since this is

when most of the planting and critical growth periods tend to occur. In addition, variation

in the 12-month SPEI will mostly be driven by climate variation within the rainy seasons.

This is because the 12-month SPEI value takes the accumulated water deficit over the last

12 months into account, which means that relative changes in rainfall in the rainy seasons

will have a much larger effect than changes in the dry seasons.20 To the extent that the

12-month climate variable unadjusted for local crop calendars adds unnecessary variation,

adjusting this locally should only increase the precision and magnitude of the estimates from

a reduction in classical measurement error. For agricultural production, I use the following

outcome variables:

20If the 12-month SPEI value instead was calculated as the 12-month average of monthly SPEI values, then
the measure would weight relative deviations in wet and dry seasons equally.
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Log Production – The log of production (tonnes) of a crop in a country and year.

Log Yield – The log of the production (tonnes) per harvested acre.

3.5 Migration Data: Niva et al. (2023)

Lastly, I construct a global migration panel at the region level using a recent dataset from Niva

et al. (2023). This data contains inter-regional migration rates at the admin 1-level. Since

my main dataset is identified at this level, I can test whether recent climate uncertainty also

affects migration and hence the composition of the households in my sample. While the main

purpose of this exercise is for identification purposes, migration could itself be one mechanism

by which households smooth their consumption and a potential outcome of interest. I use

the following outcome variable:

Net migration rate – The net migration rate per 1000 inhabitants at the region (admin 1)

level. Positive values indicate net in-migration, and negative values net out-migration.

3.6 Descriptive Statistics

Table 1 provides descriptive statistics for the full and rural FinScope sample, respectively.

Overall, most individuals save (60%), but only a small share saves formally, through e.g. a

savings account. Instead, most saving is done through informal means (typically through

a village-level savings group) or through family and friends, especially for rural households.

Consistent with this, most individuals still do not have access to credit or insurance, with

rates at around 31-33% and 13-15%, respectively.

By construction, SPEI12m will have a mean close to zero and a standard deviation close

to 1. The slightly negative value indicates that most individuals faced slightly drier-than-

normal conditions when surveyed. Similarly, Climate instability5y should have a mean close

to 0 since it is residualized on Climate variability5y. Climate variability5y should be close to 1

if there is no dependence between climate realizations each year, but this is slightly smaller,

at 0.78. This could indicate the presence of long-term dependence, such that deviations from

the mean are clustered over time to some degree.

As expected, education levels are relatively low, with the mean education roughly equiv-

alent to having completed primary school. The mean age is in the age category representing

35-44 year-olds. About 35% of the sample lives in urban areas, and a small majority of the

sample consists of female individuals.
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Table 1: Summary statistics for the full and rural samples in the FinScope dataset

Full sample Rural sample

Mean SD Mean SD

Outcomes
Save 0.609 0.49 0.602 0.49
Save formally 0.151 0.36 0.122 0.33
Save informally 0.273 0.45 0.278 0.0.45
Save through family and friends 0.293 0.46 0.316 0.46
Have loans 0.313 0.46 0.333 0.47
Have insurance 0.149 0.36 0.133 0.34

Climate variables
SPEI12m –0.187 0.91 –0.079 0.88
Drought12m 0.158 0.36 0.129 0.34
Climate variability5y 0.785 0.36 0.777 0.34
Climate instability5y 0.000 0.19 0.003 0.18

Individual characteristics
Age category 3.163 1.43 3.163 1.42
Education level 2.332 1.07 2.158 1.00
Urban 0.349 0.48 0.000 0.00
Female 0.545 0.50 0.537 0.50

Year of observation 2015 3.71 2015 3.53

Observations 223,670 145,503

Note: Ages are reported as quintile groups, ranging from 16-24 years (1), 25-34 years (2), 35-44 years (3),
45-60 years (4), and 61+ years (5). Education is categorized as: no education or incomplete primary school
(1), completed primary school (2), completed secondary school (3), vocational training (4), and completed
tertiary education (5).

3.7 Identification Strategy

My main specifications can be interpreted as a reduced form analysis, where I use climate

variability and instability as instruments for income uncertainty, to estimate the effect of

households’ consumption smoothing strategies. For this to identify a causal effect on saving,

I need three assumptions to hold. First, climate realizations over the past 5 years must be

randomly assigned (the independence assumption). Since this is measured as deviations from

the local long-term mean, and weather is mostly random, any violation would most likely

instead arise from self-selection, as households may react by selecting into or out of areas

depending on past climate outcomes. As a preliminary test, Figure 3 shows covariate balance

tests for climate instability and variability, with standardized effect sizes. Reassuringly, cli-

mate instability does not correlate significantly with any covariate, while there is significant

negative selection for education from climate variability, especially for non-household mem-

bers, suggesting that households’ with younger and more educated members might migrate
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out of areas facing high climate variability. While the effect size is rather small, it is impor-

tant to consider this negative selection when interpreting the effects from climate variability.

Later, as a robustness check, I investigate the effects of exposure to climate instability and

variability on migration directly.

Figure 3: Covariate balance tests for the global FinScope dataset

Notes: All variables are standardized to demonstrate the effect of a one standard deviation increase in climate
instability and climate variability, respectively, on each covariate (standardized). HH denotes the head of
the household, while non-HH denotes other household members.

Second, the relevance assumption states that for climate uncertainty to affect income

uncertainty it must be the case that current climate has a significant effect on current agri-

cultural production. While this is fairly uncontroversial, it allows me to test the strength of

the first stage and also rule out any effects of past climate uncertainty on current agricultural

production, conditional on current climate. Hence, the first specification that I estimate is:

Ycy = α1
c + α2

y + βSPEI12mcy + γClimV ar5ycy + δClimInstab5ycy +X′
cyΓ + εcy (3)

Where Ycy is either Log Production or Log Yield in country c in year y, α1
c , α2

y are

country- and year fixed effects, β the coefficient of interest, and X are climate controls which

include climate realizations over the past five years. Lastly, the exclusion restriction states

that climate instability and variability should only affect consumption smoothing through

effects on income uncertainty. Hence, for a null effect of climate variability and instability

on current income, γ and δ should preferably be close to 0.

For my main specification, where I estimate how past climate uncertainty affects current
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consumption smoothing strategies, I essentially run a“horse-race”between climate variability

and climate instability, conditional on current and past climate realizations:

Yicry = α1
c + α2

y + βSPEI12mry + γClimV ar5yry + δClimInstab5yry +X′
icryΓ + εicry (4)

where Yicry is whether an individual i in region r, country c, and year y saves, has any

credit, or has any insurance. The vector X includes age category, education level, an urban

dummy, and a female dummy.

In additional analyses, I use a similar specification as (4) using the Tanzania district panel

and the Tanzania NPS household panel, where I essentially replace the country fixed effects

with district and household fixed effects, respectively, and generate climate variables at the

district-year level. Since the treatment variables are continuous, the identifying variation

comes from different treatment dosages over time within the same district or household.

While this helps with identification relative to the cross-sectional global FinScope analysis,

it introduces potential bias from heterogeneous and dynamic treatment effects. To check

robustness to these sources of bias, I also re-run the analysis using the estimator proposed

by De Chaisemartin and d’Haultfoeuille (2020).

Since the treatment is applied at the region- and district levels, standard errors are clus-

tered at this level following Abadie et al. (2023), which also helps to account for within-district

serial correlation (Bertrand, Duflo and Mullainathan, 2004).

4 Results

4.1 Climate and Agricultural Production

Table 2, Panel A, reports the results from the regression of agricultural production on cli-

mate and climate uncertainty, which I use to validate my theoretical model and empirical

strategy. Results are reported for the universe of FAOSTAT-reporting countries (“Global

Sample”) and for countries within the same regions as the FinScope sample (“FinScope re-

gions”, representing Sub-Saharan Africa, South- and Southeast Asia). First, I find a strongly

significant positive effect of SPEI12m on log production.21. This indicates a significant linear

relationship between SPEI12m and agricultural production, which validates the assumption

in the theoretical model of additive income shocks from deviations in the SPEI12m. While

the model is at the household level and these results represent the country level, assuming

21While my analysis is reduced form, the effect of SPEI12m roughly corresponds to F-statistics of 25 to 39,
indicating a strong first stage.
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a fixed number of households in the short-run, the average household income can be defined

as y = Y/N where Y is total country level production and N the number of households in

each country, such that y ∝ Y .

The effect is also economically meaningful: within FinScope regions, a one standard

deviation in the SPEI increases production by 7%, and a drought reduces production by

14%. Given that these are aggregated at the country-level, measuring crop production on

a more local level would arguably only result in larger estimates. For reference, Kubik and

Maurel (2016) shows that negative SPEI values have a large and meaningful effect on crop

production in Tanzania, using household-level data. The authors find that SPEI12m is the

strongest predictor, and find that a one deviation reduction in the SPEI12m reduces crop

production by 20-30%.22

Reassuringly, climate variability and instability does not affect current production, condi-

tional on current and past climate realizations, and these null effects are relatively precisely

estimated.

For log yield, defined as the log of production per harvested area unit, I find qualitatively

the same results as for production with the global sample, but not in the sample of FinScope

regions. This could indicate that in regions that rely on rainfed farming with less inputs and

capital, the total area sown and harvested is itself a function of rainfall. Indeed, farmers

relying on rainfed agriculture in the drought-prone Sahel belt tend to wait until the rainy

season arrives before they start sowing (Bussmann et al., 2016). This indicates that in dry

years a smaller area is cultivated, most likely the subset of areas less affected by droughts.

4.2 Climate Uncertainty and Saving Behavior

Table 3 reports the main results: how climate uncertainty affects saving propensity. First, I

find only a weak relationship between current climate SPEI12m and saving, which interestingly

is negative instead of positive, as predicted by the theoretical model and hypothesis i).

Instead, the effects from the climate uncertainty variables are more consistently significant.

I find a positive effect of climate instability, and a negative effect of climate variability on

saving, with the caveat that climate variability may induce negative selection to some extent.

Column (6) presents my preferred specification, which is the effect of climate uncertainty

within the rural sample. To give an economic interpretation of the effect, a one standard

deviation increase in climate instability increases the propensity to save by 2 pp, or 4%,

whereas the same increase in climate variability decreases the propensity to save by 1.5 pp,

22Running the regression only on Tanzania yields an (imprecise) 0.35 coefficient on SPEI12m, similar to Kubik
and Maurel (2016). In line with their results, I find limited effects of SPEI realizations prior to the past 12
months (results available upon request).
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Table 2: Climate uncertainty and agricultural production

Global Sample FinScope Regions

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Log Production

SPEI12m 0.050∗∗∗ 0.026∗∗∗ 0.028∗∗∗ 0.069∗∗∗ 0.048∗∗∗ 0.053∗∗∗

(0.008) (0.009) (0.009) (0.014) (0.017) (0.016)
Drought12m –0.119∗∗∗ –0.080∗∗∗ –0.072∗∗∗ –0.138∗∗∗ –0.070∗ –0.046

(0.017) (0.021) (0.020) (0.029) (0.036) (0.034)
Climate Variability5y –0.047 –0.120

(0.035) (0.073)
Climate Instability5y –0.008 –0.007

(0.035) (0.064)

Panel B: Log Yield

SPEI12m 0.023∗∗∗ 0.014∗ 0.016∗∗ 0.008 0.009 0.011
(0.006) (0.007) (0.007) (0.013) (0.016) (0.017)

Drought12m –0.052∗∗∗ –0.032∗ –0.026 –0.009 0.004 0.012
(0.013) (0.016) (0.016) (0.027) (0.032) (0.032)

Climate Variability5y –0.030 –0.051
(0.026) (0.061)

Climate Instability5y 0.009 –0.023
(0.029) (0.073)

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 14,181 14,181 14,181 14,181 6,437 6,437 6,437 6,437
Clusters 181 181 181 181 66 66 66 66

Note: Log Production is the log of production (tonnes), while Log Yield is the log of production per area
harvested (tonnes/ha), for each crop, country, and year. Crops included in the analysis are: rice, wheat, maize,
cassava, sorghum and millet. FinScope Regions indicate countries located in the regions of the FinScope
survey dataset (Sub-Saharan Africa, South Asia and Southeast Asia). SPEI12m is the average SPEI value
over the past 12 months aggregated at the country level. Drought12m is a binary variable equal to 1 if SPEI12m
< 1. Climate controls include yearly SPEI values for the last 5 years, excluding the last 12 months. Climate
variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average absolute
difference in SPEI over the last 5 years, residualized on Climate variability5y. Regressions are weighted by
each crop’s contribution to the total agricultural production of each country. Standard errors are clustered
at the country level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 3: Climate uncertainty and saving behavior

Saved in past 12 months

(1) (2) (3) (4) (5) (6) (7)

SPEI12m –0.009 –0.009 –0.003 0.001 –0.003
(0.011) (0.011) (0.010) (0.012) (0.009)

Climate variability5y –0.040∗ –0.037 –0.029 –0.037 –0.019
(0.023) (0.023) (0.021) (0.023) (0.022)

Climate instability5y 0.119∗∗∗ 0.114∗∗∗ 0.094∗∗∗ 0.143∗∗∗ 0.007
(0.038) (0.037) (0.033) (0.038) (0.035)

Sample Full Full Full Full Full Rural Urban
Country FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
HH controls No No No No Yes Yes Yes

Observations 223,602 223,602 223,602 223,602 223,602 145,502 78,100
Clusters 384 384 384 384 384 374 363

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1) level.
Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average
absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include
moving averages of the SPEI values for the last 5 and 30 years, and climate variability and instability over
the last 30 years. Household controls include: age category, education level, an urban dummy, and a female
dummy. Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.

or 2.4 %. This is largely in line with hypotheses ii) and iv) which state that savings should

go up with climate instability, and primarily for rural households.

4.2.1 Heterogeneity in Climate Uncertainty and Saving Behavior

Rural/urban – As a falsification test, Table 3, column (7) reports the results for the urban

sample. In the absence of agricultural spillovers and general equilibrium effects, we do not

expect an effect of climate uncertainty in urban areas, where most of the income is non-

agricultural. The results show a relatively precisely estimated null effect for the urban sub-

sample. Hence I conclude that the effect of climate instability on saving is largely a rural

phenomenon.

Labor skill level – Less skilled labor should be more likely to rely on agricultural production

as a main source of income. Since labor skills are intimately connected to education, I

analyze heterogeneity by education levels. Whether there is heterogeneity by education may

be ambiguous ex-ante, however, since higher education has been shown to increase financial

literacy (Zhou, Yang and Gan, 2023), which may compensate for the lower probability of

depending on agriculture. Table 4 reveals a negative trend from less skilled to more skilled

labor, where the largest effects of climate instability on saving is seen for unskilled labor (those
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Table 4: Climate uncertainty and saving behavior, by labor skill level

Saved in past 12 months

Unskilled Low skill Medium skill High skill
(1) (2) (3) (4)

SPEI12m 0.003 0.005 –0.002 –0.004
(0.018) (0.015) (0.012) (0.018)

Climate variability5y –0.071∗ –0.029 –0.024 0.058
(0.039) (0.030) (0.022) (0.038)

Climate instability5y 0.186∗∗∗ 0.156∗∗∗ 0.080∗∗ 0.088
(0.067) (0.040) (0.036) (0.067)

Sample Rural Rural Rural Rural
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
HH controls Yes Yes Yes Yes

Observations 41,582 56,664 43,106 4,149
Clusters 365 371 372 285

Note: Unskilled labor is defined as having not completed primary education, low skill as having completed
only primary education, medium skill as having completed secondary education and/or received vocational
training, and high skill as having completed tertiary education. SPEI12m is the average SPEI value over the
past 12 months aggregated at the region (admin 1) level. Climate variability5y is the standard deviation of
last 5 years’ SPEI values. Climate instability5y is the average absolute difference in SPEI over the last 5
years, residualized on Climate variability5y. All regressions include moving averages of the SPEI values for
the last 5 and 30 years, and climate variability and instability over the last 30 years. Household controls
include: age category, education level, an urban dummy, and a female dummy. Standard errors are clustered
at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.

who have not completed primary school), and virtually zero effects on high-skilled labor (those

with tertiary education), while the relationship with climate variability is weaker. The saving

propensity is the lowest among unskilled labor, about 53%, meaning that the effect size within

this group is considerably larger than for the other groups. This group is also likely to be

the most vulnerable to climate shocks in general. Here, a one standard deviation increase in

climate instability increases the likelihood of saving by more than 5%.23

Gender – Research indicates that women are more likely to be excluded from financial

services in low-income countries (Morsy, 2020). Consistent with this, the sample means in

the FinScope data suggest that females are less likely to save than males. This could be

the result of systematic discrimination and that women would be less able to save during a

period of high climate instability. However, I find no significant differences in the effect of

climate instability between males and females (results available upon request).

23The largest effect size is found for unskilled labor within the rural sample, where the effect on saving is 7%.
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4.3 Climate Uncertainty, Credit, and Insurance

While credit and insurance are less common than saving as means of financial smoothing

in the FinScope sample, they may still be affected by climate uncertainty for the same

reasons as saving is. Table 5, Panel A and B, reports these results for credit and insurance

respectively, using the same specifications as in Table 3. For credit, I find that it is affected

analogously to savings. Climate instability has a positive effect on the uptake of credit, and

this is driven specifically by the rural sample, whereas climate variability has no effect. This

may indicate that households, in addition to savings, use credit as a means of consumption

smoothing when the climate is unstable. In addition to increasing the salience of climate risk,

an unstable climate also implies the presence of “good years” in the recent past, which may

assist households in qualifying for loans.24 In contrast, I find no effect of climate instability

on insurance uptake. Instead, I find a significant negative effect of climate variability on

insurance. One disadvantage of the insurance data in the FinScope surveys is that it mostly

consists of non-agricultural insurance, such as e.g. life and health insurance. Hence, it is

not clear ex-ante how these would be affected by climate uncertainty. In the sense that it

may affect insurance demand through a change in risk preferences, I elaborate on this in

Section 5.3.

24Similarly to the effect on saving, I find a positive effect on loans only during wet years, which suggests
that one channel of credit uptake can be through relaxed credit constraints from positive income shocks,
in combination with the expectation of a future drought.
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Table 5: Climate uncertainty and uptake of credit and insurance

Saved in past 12 months

(1) (2) (3) (4) (5) (6) (7)

Panel A: Has loans

SPEI12m 0.006 0.007 0.006 0.001 0.019∗∗

(0.009) (0.009) (0.009) (0.011) (0.009)
Climate variability5y 0.013 0.016 0.018 0.018 0.016

(0.017) (0.017) (0.017) (0.018) (0.021)
Climate instability5y 0.080∗∗ 0.082∗∗∗ 0.074∗∗ 0.099∗∗∗ 0.046

(0.031) (0.031) (0.031) (0.036) (0.029)

Panel B: Has insurance

SPEI12m 0.011 0.010 0.015∗ 0.014 0.010
(0.009) (0.008) (0.008) (0.010) (0.007)

Climate variability5y –0.030 –0.030 –0.025 –0.038∗ –0.015
(0.021) (0.020) (0.020) (0.022) (0.021)

Climate instability5y –0.009 –0.011 –0.020 –0.012 –0.033
(0.028) (0.028) (0.027) (0.023) (0.040)

Sample Full Full Full Full Full Rural Urban
Country FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
HH controls No No No No Yes Yes Yes

Observations 223,602 223,602 223,602 223,602 223,602 145,502 78,100
Clusters 384 384 384 384 384 374 363

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1) level.
Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average
absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include
moving averages of the SPEI values for the last 5 and 30 years, and climate variability and instability over
the last 30 years. Household controls include: age category, education level, an urban dummy, and a female
dummy. Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.
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5 Mechanisms

5.1 Building Up a Savings Buffer in Good Years

Hypothesis iii) predicts that climate instability should increase savings specifically in wet

years, when households’ earn an agricultural surplus and expect coming years to revert to

the mean or lower. Table 6 reports the results split by if the past 12 months were “wet”

(SPEI12m > 0) or “dry” (SPEI12m < 0). I find that the full effect of climate instability is

driven by locations that experienced wetter than normal weather in the past 12 months. Here

the estimated effect is twice as high as in the main specification, while the effect is essentially

zero during dry years. This suggests that households use current favorable conditions to build

up buffer savings before the climate again turns dry.

The negative effect of climate variability, on the other hand, seems to be driven by places

experiencing dry weather. While the interpretation of effects from climate variability is

less clear, individuals facing high climate variability coupled with current dry weather are

more likely to be on a “downward trend”, as indicated in Figure 1 d). This may make

these households especially incapable to put away savings, and may also help to explain the

negative selection on education seen for this exposure.

To more precisely look into how these buffer savings are generated, Table 7 breaks down

the effect in wet and dry years by the type of saving: formal (bank account), informal

(typically a local community-level savings group), or family and friends. Despite the ongoing

mobile and fintech revolutions, most of the increase in saving from climate instability occurs

through saving informally or through family and friends. Saving informally, i.e. through

a local community-level savings group, perhaps reveals the most telling pattern. Savings

group operate by allowing their members to save collectively and lend out to those most at

need, and some also offer an emergency fund financed by regular contributions (Karlan et al.,

2017). The positive effect of climate instability in wet years is almost exactly mirrored by a

negative effect in dry years, indicating a cyclical savings pattern, where farming households

deposit to the savings group in wet years, and withdraw their savings in dry years. Consistent

with this, households facing high climate variability also see a negative effect on this form of

saving in dry years, suggesting that they may withdraw their savings in this situation as well.

These results thus indicate that local saving groups serve an important purpose in helping

agricultural households smooth consumption through periods of high climate and income

instability.
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Table 6: Climate uncertainty and saving behavior, by current climate conditions

Saved in past 12 months

All years Wet year Dry year
(1) (2) (3)

SPEI12m 0.001 0.041∗∗ 0.002
(0.012) (0.019) (0.025)

Climate variability5y –0.037 –0.058 –0.048
(0.023) (0.040) (0.043)

Climate instability5y 0.143∗∗∗ 0.224∗∗∗ 0.013
(0.038) (0.056) (0.061)

Sample Rural Rural Rural
Country FE Yes Yes Yes
Year FE Yes Yes Yes
HH controls Yes Yes Yes

Observations 145,502 67,072 78,430
Clusters 374 170 238

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1)
level. Wet year is the sample where SPEI12m > 0 and Dry year the sample where SPEI12m < 0. Climate
variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average absolute
difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include moving
averages of the SPEI values for the last 5 and 30 years, and climate variability and instability over the last
30 years. Household controls include: age category, education level, an urban dummy, and a female dummy.
Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.

5.2 Climate Instability as a Predictive Heuristic

One reason why individuals would build up buffer savings is due to a higher likelihood of

mean reversion following a wet year when the climate is unstable. This would make saving

rational, even in the presence of behavioral biases, such as the availability heuristic and

salience effects. Indeed, I find this to be the case. Table 8 shows that climate instability

in particular is predictive of future climate shocks, using climate variables lagged by one

year, and current climate as outcomes. First, in column (1), I find that climate instability

significantly increases the risk of a drought in the subsequent 12 months. A one standard

deviation increase in climate instability increases the probability of a drought by 5 pp, or

about 33%. Consistent with this, column (2) reports a negative, though insignificant, effect

on SPEI12m. However, climate instability may be more informative of the second rather

than the first moment of the distribution, in that it primarily affects tail risks. Column (3)

instead uses the absolute value of SPEI12m, capturing an effect on more extreme weather in

both directions, and here the effect is again significant and economically meaningful. Lastly,

column (4) shows that this effect is particularly strong for the left tail (drought risk), as

conditional on the current year being dry, high climate instability will strongly increase the

risk of severe dryness. In other words, a one standard deviation increase in climate instability
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Table 7: Climate uncertainty and saving behavior, by current climate conditions and type of
saving

Saved in past 12 months, by type

Wet year Dry year

Formal Informal Family and friends Formal Informal Family and friends

SPEI12m 0.004 0.045∗∗ 0.020 –0.008 0.011 0.006
(0.006) (0.020) (0.022) (0.008) (0.022) (0.026)

Climate Variability5y –0.007 –0.055 0.013 0.013 –0.093∗∗ 0.018
(0.011) (0.047) (0.050) (0.019) (0.038) (0.049)

Climate Instability5y 0.015 0.175∗∗∗ 0.168∗∗∗ 0.083∗∗ –0.145∗∗∗ 0.021
(0.015) (0.063) (0.059) (0.033) (0.051) (0.061)

Sample Rural Rural Rural Rural Rural Rural
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
HH controls Yes Yes Yes Yes Yes Yes

Observations 67,072 67,072 67,072 78,430 78,430 78,430
Clusters 170 170 170 238 238 238

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1)
level. Wet year is the sample where SPEI12m > 0 and Dry year the sample where SPEI12m < 0. Climate
variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average absolute
difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include moving
averages of the SPEI values for the last 5 and 30 years, and climate variability and instability over the last
30 years. Household controls include: age category, education level, an urban dummy, and a female dummy.
Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.

increases next year’s dryness by about 10% of a standard deviation, conditional on that year

being dry.

5.3 Deliberate Savings Strategy or a Change in Time or Risk preferences?

Exposure to past shocks may affect saving behavior through a change in latent time or

risk preferences. For example, natural disaster such as the 2004 Tsunami led to substantial

long-lasting increases in both risk aversion and impatience (Cassar, Healy and Von Kessler,

2017). In the theoretical model, risk aversion is captured by the parameter α, and this is one

mechanism through which climate uncertainty can affect current saving behavior, in addition

to effects on subjective climate risk σ̂2
w.

One way to test the effect of risk preferences is a placebo test where insurance uptake

is used as an outcome. This is one of the outcomes reported in Table 5. Given that I find

no effect of climate instability on insurance, I take this as evidence to suggest that climate

instability does not substantially affect risk preferences. In contrast, climate variability has a

significant negative effect, suggesting that this effect partially could operate through a change

in risk preferences. However, this finding is hard to reconcile with the natural disasters liter-

ature, since it would imply that climate variability leads to less risk aversion. If households
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Table 8: The predictive ability of recent climate instability for future droughts and extreme
weather

Droughts and SPEI in the past 12 months

Drought12m SPEI12m Abs(SPEI12m) SPEI12m, if SPEI12m < 0
(1) (2) (3) (4)

SPEI12-24m 0.065∗∗ –0.271∗∗∗ –0.077 –0.156∗∗

(0.032) (0.069) (0.064) (0.072)
Climate variability1-6y 0.107∗∗ –0.176 0.023 –0.289∗∗

(0.050) (0.142) (0.111) (0.129)
Climate instability1-6y 0.220∗∗∗ –0.087 0.223 –0.489∗∗∗

(0.077) (0.139) (0.155) (0.169)

Sample Rural Rural Rural Rural
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
HH controls Yes Yes Yes Yes

Observations 145,502 145,502 145,502 78,430
Clusters 374 374 374 238

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1) level.
Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average
absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include
moving averages of the SPEI values for the last 5 and 30 years, and climate variability and instability over
the last 30 years. Household controls include: age category, education level, an urban dummy, and a female
dummy. Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.

opt out of insurance due to financial constraints, it could be that climate variability, through

negative effects on individuals’ wealth, alternatively lead to a net reduction in insurance

demand.

To disentangle buffer savings from the effect of a change in time preferences, I break down

the main result on saving by the stated reason of saving. This data is only available for a

subset of the surveyed countries, one of which is Tanzania, for which I have panel data at the

district level. This allows me to relax some of the identifying assumptions, as I can rely on a

parallel trends assumption and not have to worry that climate uncertainty variables pick up

region-specific characteristics. I here also have more detailed data on which households rely

on agriculture as their main source of income (“Farmers”).

Columns (1) and (2) in Table 9 replicate the main results, with overall similar effect sizes

as in Table 3. In a sense, this can be seen as an out-of-sample test of the main results, and the

main estimates change little by excluding Tanzania from the sample. However, when I break

down saving by the stated reason for saving, I find that virtually the full increase in saving

propensity is explained by saving for emergencies (column 3). In contrast, I find no effect on

saving for other reasons, as reported in column (4), which should pick up a latent change in

time preferences. Lastly, column (5) shows that there is a weakly significant positive effect
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Table 9: Climate uncertainty and saving behavior, using Tanzania district panel data

Saved in past 12 months Saved for
emergencies

Saved for other
reasons

Member of
savings group

(1) (2) (3) (4) (5)

SPEI12m –0.006 0.029 –0.013 0.015 –0.001
(0.017) (0.021) (0.021) (0.015) (0.004)

Climate variability5y –0.004 0.009 0.111 –0.124∗∗ –0.034∗

(0.059) (0.081) (0.074) (0.056) (0.019)
Climate instability5y 0.115∗ 0.202∗∗ 0.188∗∗∗ –0.007 0.024∗

(0.060) (0.089) (0.070) (0.055) (0.013)

Sample Full Farmers Farmers Farmers Farmers
District FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
HH controls Yes Yes Yes Yes Yes

Observations 22,081 8,067 7,205 8,040 8,018
Clusters 129 129 129 129 129

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the district (admin 2) level.
Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average
absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All regressions include
yearly SPEI values for the last 5 years as climate controls, in addition to the last 12 months. Household
controls include: age, education level, an urban dummy, and a female dummy. Standard errors are clustered
at the district (admin 2) level. * p<0.1, ** p<0.05, *** p<0.01.

of climate instability on being a member of a local savings group, which links to the results

on savings as a buffer in Section 5.1.

5.4 Climate Shock Salience

In Section 2.3 I speculated that one channel of how climate instability can increase saving,

in addition to mechanical effects from an agricultural surplus and mean reversion, is due to

subjective experience. Shocks that happen in an interleaved fashion may increase the salience

of individual shocks, relative to when multiple consecutive shocks cause a new “norm”. To

test this, I use a third dataset consisting of the Tanzania NPS household panel. In addition

to containing information on whether households experienced a severe climate shock in the

past five years, this dataset arguably provides the strongest identification, as I can exploit

within-household variation in climate uncertainty exposure and not have to worry about

selection effects.

Columns (1) and (2) of Table 10 reports the results of this exercise. First, using the main

specification I find a positive effect of climate instability on climate shock salience, though

imprecise, with a p-value of about 0.15. However, climate shocks consist both of floods

and droughts, and hence using the absolute value of the SPEI is arguably an appropriate
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Table 10: Climate uncertainty, reported shock severity, non-food expenditures and reported
food shortages

Reported a severe
climate shock

Log Non-food
expenditures

Food shortage, last 12
months

(1) (2) (3) (4) (5) (6)

SPEI12m –0.034∗ 0.032 –1.574 0.025 0.047
(0.019) (0.158) (0.710) (0.019) (0.092)

Abs(SPEI12m) 0.057∗∗

(0.029)
Climate variability5y –0.015 0.054 0.655 2.111∗∗∗ 0.174∗∗ 0.145

(0.070) (0.071) (0.543) (0.651) (0.068) (0.092)
Climate instability5y 0.103 0.163∗∗ 1.675∗∗∗ –1.082 –0.221∗∗∗ –0.095

(0.072) (0.064) (0.559) (0.989) (0.062) (0.153)
Climate variability5y 1.526∗∗ –0.029
× SPEI12m (0.667) (0.081)
Climate instability5y –2.716∗∗∗ 0.116
× SPEI12m (0.935) (0.151)

HH FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 17,151 17,151 21,530 21,530 15,665 15,665
Clusters 153 153 153 153 155 155

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the district (admin 2) level.
Wet year is the sample where SPEI12m > −1 and Dry year the sample where SPEI12m < −1. Reported
climate shock severity is reported severity of a recent climate shock (drought or flood), on a scale from 0 (no
shock) to 3 (most severe). Log Assets is the log of the current estimated value of all assets. Food shortage,
last 12 months is a binary variable equal to 1 if the household reported any food shortage in the last 12
months. Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y
is the average absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All
regressions include yearly SPEI values for the last 5 years as climate controls, in addition to the last 12
months. * p<0.1, ** p<0.05, *** p<0.01.

control variable. With this specification, I find strongly significant positive effects of both

Abs(SPEI12m) and climate variability, even conditional on the absolute value of past years’

SPEI realizations. This suggests that when shocks are structured in an interleaved fashion,

they are more likely to be remembered as severe incidents, compared to when they occur in

clusters, and may thus affect saving through their effect on subjective climate risk σ̂2
w.

5.5 How Do Households Save and How is Their Welfare Affected?

Lastly, I use the Tanzania NPS household panel to also investigate how households manage

to save. Since I find no effects on current income (Table 2), and positive effects on saving

(Table 3), it must be that households that face climate instability cut down on their con-

sumption in order to increase their precautionary saving. If the purpose of the emergency

savings is to reduce the risk of food shortage and starvation, then we would expect to see
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a decline in non-food expenditures. Table 10, columns (3) and (4) report the results of

this exercise. First, and somewhat counter-intuitively, I find that climate instability has a

positive effect on non-food expenditures. The Tanzania NPS data consists of four different

waves which all seem to have taken place in relatively dry years. The median SPEI12m is less

than -1, indicating drought conditions for the majority of the sample across waves, and few

households experienced wet conditions at all. Building on my previous results, this suggests

that households who face climate instability may currently be withdrawing their savings form

previous wet years, and may hence see a smaller negative effect on their overall consumption

compared to other households. Second, and consistent with this explanation, the effect of

climate instability masks considerable heterogeneity. Interacting climate instability and vari-

ability with current climate, column (4) shows that the positive effect of climate instability

on non-food consumption is higher for those households experiencing more dry conditions.

In contrast, climate variability has the opposite effect, and here consumption is instead lower

when the current climate is drier, consistent with the baseline negative effects of climate

variability on saving.

How does this affect the welfare of households? In column (5) I estimate the effect of

climate variability and instability on reported food shortages over the last 12 months. Con-

sistent with the effect on precautionary savings, I find that exposure to climate instability has

a strong negative effect on the likelihood of having faced food shortages, while climate vari-

ability increases this risk. While these survey waves mostly reflect drought conditions, where

food shortages arguably should be higher, in column (6) I break down the effect by current

climate conditions. I do not find any significant effect by whether local climate conditions

were more or less dry, which could either be due to low power, or that households, to avoid

food shortages in a dry climate, instead adjust the non-food expenditures margin, as found

in column (4), to avoid an acute food shortage. This could still make high climate instability

households more protected against food shortages, as seen in column (5), if other unexpected

shocks that are orthogonal to local climate conditions, such as increases in international food

prices, occur, since these households would be more likely to have built up a precautionary

savings buffer. Consistent with this finding, a recent meta-analysis of 27 randomized saving

interventions across Sub-Saharan Africa found a small but significant positive effect on food

security (Steinert et al., 2018).

6 Robustness Checks

Migration – One threat to the identification strategy is that households may cope by mi-

gration, either through moving the whole household or sending off household members. For
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migration to affect the main results through compositional effects, any effects on migration

would have to be at the inter-regional (admin 1) or higher, and it would have to be selective,

such that individuals’ baseline propensity to save correlates with the likelihood of migrating.

The balance tests in Figure 3 do not reveal any significant differences in covariates such as

education or age for exposure to climate instability, and these null results are relatively pre-

cise and bounded at low effect sizes. However, for climate variability, exposure is negatively

correlated with education. This could be the case if there is negative selection on climate

variability, such that more educated household members migrate out of regions that have

faced higher climate variability recently.

To test whether climate instability and variability affect migration directly, I first use the

global region-level migration dataset by (Niva et al., 2023) for the countries in my sample

and a two-way fixed effects strategy. Table A.5, column (1) reports these results. I find no

significant effects either of from last 12 months SPEI value, nor from climate instability or

variability. These results are relatively precise, and suggest that the effect of a one standard

deviation increase in climate instability is bounded above at 0.3 migrants/1000 inhabitants.

It may still be that this exposure triggers migration within rather than between regions,

which should not be a concern for the identification of the main results. As a second test, I

use the household panel from the Tanzania NPS which allows me to capture any potential

effects on migration within one of the countries in the main sample. Table A.5, column (2)

reports the results. Again, I find relatively precise null effects on whether a household ever

moved. While power is low, an upper bound of the effect on on migration is a 4% increase

per one standard deviation increase in climate instability. The risk of compositional effects

from climate variability is higher, consistent with the covariate imbalance for education in

Figure 3. However, comparing the effect sizes on saving and migration, I conclude that it is

unlikely that migration is a main driver of the effects on saving.

Alternative time windows – I test the sensitivity of the time window bandwidth by replacing

the 5-year window with a 10-year window, while the district fixed effects absorb any long-

run variation. Table A.2 reports these results. Overall, I find smaller effect sizes, and only

a strongly significant effect of climate instability on saving for the rural subsample. The

magnitude, 0.105, is similar to the estimate from my preferred specification, 0.133, however.

Since the estimated effects includes exposure from the past five years, this recent exposure

is more informative for individuals’ decision-making, consistent with the literature on price

effects of natural disasters that tend to show a decay in economic effects after 3-4 years

(Atreya, Ferreira and Michel-Kerjan, 2015).
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Measurement error in the SPEI – Since the SPEI uses interpolated data for grid cells where

there are no weather stations, it is potentially sensitive to measurement error with a scarcity

of stations. If the measurement error is uncorrelated with the dependent and independent

variables it would only bias my estimates downward. To see whether this is the case, I use

station density data from the CRU TS climate data Harris et al. (2020), which is used as input

to the SPEI. This contains gridded data on the number of weather stations (temperature and

precipitation) that contribute to interpolating climate data in a specific grid cell. Similar to

the SPEI, I aggregate this measure at the country- and region levels. I define high station

density as areas where the number of stations used for interpolation is above the sample

median. First, I analyze whether density affects the estimates for agricultural production,

reported in Table A.3. I find that the main effect of SPEI is only significant in the sample

with above median station density, while it is about 30-50% smaller in areas below median

station density. I do not find any significant effects of climate variability or instability on

current agricultural production. This suggests that measurement error may also bias my

main results on saving downwards. Table A.4 shows the results of the same analysis for my

preferred specification (6) in Table 3. I find that the results on saving from climate instability

is mostly driven by areas with above median station density, which is reassuring. I find that

rainfall stations seem more important than temperature stations in alleviating this bias,

likely due to the fact that there is much greater variation in the number of rainfall stations

used for interpolation. Overall, I arrive at an estimate around 0.14-0.149 when considering

only regions with above median station density, compared to the main effect of 0.133. This

suggests that measurement error biases my main results downward, but only to a limited

degree.

Heterogenous and dynamic treatment effects – While my main results primarily rely on

cross-sectional variation in a reduced-form , some of the specifications that support my main

results are TWFE regressions, which may be prone to biased estimates in the presence of

heterogeneous and dynamic treatment effects (Goodman-Bacon, 2021). For agricultural pro-

duction, I use specification (2) in Table 2 with a drought dummy, and the estimator robust to

heterogeneous and dynamic treatment effects by De Chaisemartin and d’Haultfoeuille (2020),

and find that the estimate for drought is virtually indistinguishable from the TWFE spec-

ification. I conclude that the effect of climate on agricultural production is not affected by

heterogeneity over time or dynamic effects, conditional on past climate controls. Next, for

the Tanzania district panel, I run an event study for the past 5 years exposure to climate in-

stability, using the same estimator. I first binarize climate instability by splitting the sample

into above or below the median. Since the estimator excludes the always-treated, and only
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exploits the first time a group switches into being treated, we should expect to lose precision

but reduce potential bias. Figure A.1 visualizes the event study estimates. While there are

only two pre-treatment periods, the results of the placebo test in period -2 is suggestive of

parallel pre-trends. While none of the individual treatment effects are significant, there are

three things to note. First, the aggregate treatment effect is significant (results not reported),

second, the effects are similar in magnitude to the baseline results in Table 9, and third, that

the effect one year after treatment remains largely unchanged, though slightly less precise,

suggesting that the positive effect on saving seems to survive over time.

Selection on unobservables – To analyze sensitivity to selection on unobservables, I follow

Oster (2019) and calculate an adjusted treatment effect of climate instability in the past 5

years, based on how the coefficient changes as control variables that increase R2 are added

(selection on observables). I assume that selection on observables and unobservables play

an equally important role, and use a theoretical R2 1.3 times greater than the R2 of the

specification with controls. For climate instability in the past 5 years, and using columns (5)

and (6) in Table 3, I find that the adjusted treatment effect on saving for the full sample is

0.066, about 80% of the unadjusted coefficient 0.083. To completely negate the treatment

effect, selection on unobservables would have to b almost 5 times greater than selection on

observables, and I thus conclude that it is unlikely that the treatment effect is driven by

selection on unobservables.25

The Tanzania district panel can be used to account for unobservable differences across

regions within a country. As Table 9, columns 1-2, show, the effect of climate instability

on saving is virtually unaffected by the inclusion of district fixed effects. The main results

are thus unlikely to be driven by inherent differences, in the absence of intense short-run

compositional effects through selective migration.

Finally, I assess unobserved heterogeneity at the household level by using a subsample of

the Tanzania National Panel Survey covering mobile money users. Here, individuals are asked

why they rely on mobile money for saving, and the reason why they do so. Table 11 reports the

results from a specification where I include household fixed effects to effectively rely on within-

household variation in exposure to climate instability and variability. I find that climate

instability, but not climate variability, leads to an increase in saving for emergency reasons.

In addition, there is a positive effect on saving for everyday purchases, which includes food

consumption, but no on big purchases, which can be considered a placebo test. In addition, I

25Interestingly, the reverse relationship is seen with the results using a 10-year window, where adding control
variables only strengthens the effect of climate instability, meaning that there is positive selection on
observables such that this estimate is likely only biased downwards.
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Table 11: Climate uncertainty and saving among mobile money users in the Tanzania NPS

Saved for
emergency

Saved for
emergency

(most
important)

Saved for
everyday
purchases

Saved for
big

purchases

Received
money

Sent money

(1) (2) (3) (4) (5) (6)

Climate variability5y 0.093 –0.031 0.010 –0.017 –0.073 0.154
(0.156) (0.062) (0.122) (0.085) (0.141) (0.145)

Climate instability5y 0.241 0.168∗ 0.218∗ 0.009 0.252∗∗ –0.040
(0.190) (0.100) (0.119) (0.058) (0.123) (0.127)

HH FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Observations 2,714 2,714 2,714 2,714 2,714 2,714
Clusters 119 119 119 119 119 119
Mean dep. variable .285 .0549 .138 .0457 .843 .739

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the district (admin 2) level.
Wet year is the sample where SPEI12m > −1 and Dry year the sample where SPEI12m < −1. Reported
climate shock severity is reported severity of a recent climate shock (drought or flood), on a scale from 0 (no
shock) to 3 (most severe). Log Assets is the log of the current estimated value of all assets. Food shortage,
last 12 months is a binary variable equal to 1 if the household reported any food shortage in the last 12
months. Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y
is the average absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. All
regressions include yearly SPEI values for the last 5 years as climate controls, in addition to the last 12
months. * p<0.1, ** p<0.05, *** p<0.01.

find that climate instability leads mobile money users to receive, but not send, more money,

suggesting that remittances from other family members and relatives may help households

achieve precautionary saving following exposure to climate instability. This is consistent

with Jack and Suri (2014), who find that mobile money users are protected against negative

income shocks, through their ability to receive remittances.

Sensitivity to outliers – Running my preferred specification, column (6) in Table 3, by

iteratively leaving out countries yields climate instability coefficients in the range 0.11-0.15

compared to the baseline coefficient of 0.13, with similar significance levels.

7 Conclusion

How does climate uncertainty in the shape of climate instability and climate variability affect

consumption smoothing strategies in a global sample of low-income rural households? I

find that exposure to climate instability, defined as the average absolute change in climate

conditions year-to-year, increases the propensity to save, and that this effect is specific to rural

households and households with low education, who are more likely to derive most of their
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income from agriculture. Importantly, this also increases additional sources of consumption

smoothing, such as credit use, but the effect is only seen when current climate conditions are

wet, where households are more likely to generate an agricultural surplus.

The increase in saving can partly be explained by the fact that climate instability seems

to predict future droughts, due to a mean-reversion effect, where experiencing a wet year

during a period of high climate instability increases the risk of a drought in the following

year. Thus, it seems that the increase in saving is a rational adaptation in preparation of

future droughts. In addition, I find evidence for a behavioral explanation, where conditional

on actual climate realizations, experiencing high climate instability make individuals and

households more likely to report having experienced a dramatic climate shock.

Using household panel data from Tanzania, I find that a likely mechanism through which

households build up precautionary savings during periods of high climate instability is by

reducing non-food expenditures. In turn this protects against food shortages, which seem to

spill over to shortages that are not necessary climate-related.

Taken together, my findings suggest that rural households in low-income countries are

adapting to local changes in climate conditions. To what extent this may alleviate the burden

of climate change is hard to tell, as this will depend not so much on first-order changes in

rainfall and temperature, but the way these shocks are structured over time.

Notably, there is limited adoption of formal financial services, and instead most climate

adaptation seems facilitated through local initiatives and informal networks. Addressing the

gaps in financial inclusion and literacy may thus be crucial to further increase the resilience

of poor rural households against the looming threat of climate change.

In contrast to a positive adaptation toward climate instability, I find instead mostly

negative effects of climate variability on saving, although they are less precise than the

effects of climate instability. Households living in places where climate change may induce

longer drought-spells may thus be much less likely to adapt to these changes. Policies that

may help to facilitate consumption smoothing among the most marginal households, such as

subsidized weather index insurance and improved access to financial services, may be more

important to pursue in these locations.
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Akponikpè, PB Irénikatché, Peter Johnston, and Euloge K Agbossou. 2010. “Farmers’

perception of climate change and adaptation strategies in Sub-Saharan West-Africa.” Vol.

1620, 134147.

Alem, Yonas, and Jonathan Colmer. 2022. “Blame it on the rain: Rainfall variability, con-

sumption smoothing, and subjective well-being in rural Ethiopia.” American Journal of

Agricultural Economics, 104(3): 905–920.

Alessie, Rob, and Federica Teppa. 2010. “Saving and habit formation: evidence from Dutch

panel data.” Empirical Economics, 38: 385–407.

Anderson, Siwan, and Jean-Marie Baland. 2002. “The economics of roscas and intrahouse-

hold resource allocation.”The quarterly journal of economics, 117(3): 963–995.

Atreya, Ajita, Susana Ferreira, and Erwann Michel-Kerjan. 2015. “What drives households

to buy flood insurance? New evidence from Georgia.”Ecological Economics, 117: 153–161.

Beaman, Lori, Dean Karlan, and Bram Thuysbaert. 2014. “Saving for a (not so) rainy

day: A randomized evaluation of savings groups in Mali.” National Bureau of Economic

Research.
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Online Appendix for “Adapting to Climate Instability: Financial Coping

Strategies of Low-Income Rural Households”

A List of Countries in the FinScope Dataset

Table A.1: List of countries and years included in the analysis

Country Years

Angola 2022

Bangladesh 2016

Benin 2018

Botswana 2020

Burkina Faso 2016

Cambodia 2015

Cameroon 2017

Cote d’Ivoire 2016

Democratic Republic of Congo 2014

Eswatini 2014, 2018

Gambia 2019

Ghana 2010, 2021

Haiti 2018

India 2015

Laos 2014

Lesotho 2021

Madagascar 2016

Malawi 2014

Mozambique 2014, 2015, 2019

Myanmar 2018

Namibia 2011, 2017

Nepal 2015

Nigeria 2016

Pakistan 2008

Rwanda 2008, 2012, 2016

Tanzania 2006, 2009, 2013, 2017

Togo 2016

Uganda 2006, 2009, 2013, 2018

Zimbabwe 2014, 2022
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B Proofs

B.1 Optimal Consumption in Two Periods with Uncertain Income

It needs to be shown that:

E[u(c1)] = 1− e−α(ȳ+(1+r)s0−α
2
σ2
w) (5)

which together with:

u′(c0) = β(1 + r)E ′[u(c1)] (6)

yield the relationship:

s∗0︸︷︷︸
Optimal savings

(2 + r) = y0 − ȳ︸ ︷︷ ︸
Current surplus

+
ασ2

w

2︸︷︷︸
Risk aversion

+
ln(β(1 + r))

α︸ ︷︷ ︸
Discounted return

(7)

We start by proving (5). Since u(c) = (1−e−αc)/α and yt = ȳ+ϵt/a with ϵt ∼ N(0, σ2
w), we

can decompose utility in period two, u(c1), into its deterministic and stochastic components:

u(c1) =
1− e−α(ȳ+(1+r)s0+ϵ1)

α
=

1− e−α(ȳ+(1+r)s0)e−αϵ1

α
(8)

To find the expectation of the stochastic component e−αϵ1 , we can use the fact that the

moment generating function of a normal distribution N(x;µ, σ2) can be written:

Mx(t) = E(ext) = eµt+σ2t2/2 (9)

Since for ϵt we have that µ = 0 and σ2 = σ2
w, we can express E[u(c1)] as:

E[u(c1)] = E

[
1− e−α(ȳ+(1+r)s0)e−αϵ1

α

]
=

1− e−α(ȳ+(1+r)s0)E[e−αϵ1 ]

α
=

1− e−α(ȳ+(1+r)s0)e−
α2σ2

w
2

α
(10)

We can now solve the first-order derivatives in (6):

u′(c0) = e−αc0 = e−α(y0−s0) (11)

and:

E ′[u(c1)] = e−α(ȳ+(1+r)s0−α
2
σ2
w) (12)
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which yields:

e−α(y0−s0) = β(1 + r)e−α(ȳ+(1+r)s0−α
2
σ2
w) (13)

By taking the natural logarithm of both sides in (13) and rearranging the terms we arrive

at the expression in (7).

C Robustness Checks

C.1 Alternative Time-Window

Table A.2: Using a 10-year window for Climate variability and instability

Saved in past 12 months

(1) (2) (3) (4) (5) (6) (7)

SPEI12m –0.014 –0.013 –0.005 –0.004 –0.005

(0.009) (0.009) (0.009) (0.010) (0.009)

Climate variability10y –0.037 –0.032 –0.028 –0.035 –0.010

(0.033) (0.033) (0.029) (0.032) (0.033)

Climate instability10y 0.047 0.047 0.079∗ 0.105∗∗ 0.026

(0.051) (0.051) (0.043) (0.049) (0.043)

Sample Full Full Full Full Full Rural Urban

Country FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

HH controls No No No No Yes Yes Yes

Observations 223,602 223,602 223,602 223,602 223,602 145,502 78,100

Clusters 384 384 384 384 384 374 363

Note: SPEI12m is the average SPEI value over the past 12 months aggregated at the region (admin 1)

level. Climate variability10y is the standard deviation of last 10 years’ SPEI values. Climate instability10y

is the average absolute difference in SPEI over the last 10 years, residualized on Climate variability10y. All

regressions include yearly SPEI values for the last 10 years as climate controls, in addition to the last 12

months. Household controls include: age category, education level, an urban dummy, and a female dummy.

Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, *** p<0.01.
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C.2 Robustness to Dynamic and Heterogeneous Treatment Effects

Figure A.1: Event study estimates for high climate instability in the past 5 years

Notes: This figure shows the event study estimates from the Tanzania district panel analysis, where the
treated group is those who were exposed to above median 5 year climate instability, using an estimator
robust to dynamic and heterogenous treatment effects (De Chaisemartin and d’Haultfoeuille, 2020).
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C.3 Measurement Error in the SPEI

Table A.3: Sensitivity to measurement error in the SPEI on crop production, for countries
in the FinScope regions

Dependent variable: Log Production

Rainfall station density Temperature station density

Above median Below median Above median Below median

SPEI12m 0.060∗∗∗ 0.045 0.074∗∗∗ 0.033

(0.020) (0.029) (0.022) (0.026)

Drought12m –0.024 –0.075 –0.005 –0.090∗

(0.045) (0.048) (0.046) (0.046)

Climate Variability5y –0.093 –0.147 –0.108 –0.172

(0.095) (0.112) (0.090) (0.135)

Climate Instability5y 0.064 –0.094 0.067 –0.062

(0.075) (0.124) (0.087) (0.093)

Mean stations 5.64 1.87 7.84 6.55

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Climate controls Yes Yes Yes Yes

Observations 3,128 3,309 3,152 3,285

Clusters 33 33 33 33

Note: Log Production is the log of production (tonnes) for each crop, country, and year. Crops included in

the analysis are: rice, wheat, maize, cassava, sorghum and millet. Only countries located in the regions of

the FinScope survey dataset are included in this analysis (Sub-Saharan Africa, South Asia and Southeast

Asia). Rainfall and Temperature station density are the average number of stations used in the interpolation

of SPEI values for each country over the time period. SPEI12m is the average SPEI value over the past 12

months aggregated at the country level. Drought12m is a binary variable equal to 1 if SPEI12m < 1. Climate

controls include yearly SPEI values for the last 5 years, excluding the last 12 months. Climate variability5y

is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average absolute difference

in SPEI over the last 5 years, residualized on Climate variability5y. Regressions are weighted by each crop’s

contribution to the total agricultural production of each country. Standard errors are clustered at the country

level. * p<0.1, ** p<0.05, *** p<0.01.
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Table A.4: Sensitivity to measurement error in the SPEI on saving behavior

Dependent variable: Saved in past 12 months

Rainfall station density Temperature station density

Above median Below median Above median Below median

SPEI12m 0.024 –0.012 0.040∗∗ –0.012

(0.016) (0.012) (0.016) (0.013)

Climate Variability5y –0.065∗ –0.035 –0.074∗ –0.040

(0.038) (0.028) (0.041) (0.025)

Climate Instability5y 0.149∗∗∗ 0.030 0.140∗∗ 0.096∗∗

(0.054) (0.045) (0.062) (0.043)

Mean no. stations 5.11 2.18 7.86 6.33

Sample Rural Rural Rural Rural

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

HH controls Yes Yes Yes Yes

Observations 73,438 72,064 62,109 83,393

Clusters 197 177 212 162

Note: Rainfall and Temperature station density are the average number of stations used in the interpolation

of SPEI values for each country over the time period. SPEI12m is the average SPEI value over the past 12

months aggregated at the region (admin 1) level. Climate controls include yearly SPEI values for the last

5 years, excluding the last 12 months. Climate variability5y is the standard deviation of last 5 years’ SPEI

values. Climate instability5y is the average absolute difference in SPEI over the last 5 years, residualized on

Climate variability5y. Standard errors are clustered at the region (admin 1) level. * p<0.1, ** p<0.05, ***

p<0.01.
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D Mechanisms and Alternative Explanations

D.1 Migration

Figure A.2: Global subnational migration rates at the region (admin 1) level 2000-2019

Notes: This figure shows the average migration rates at the region (admin 1) level for the whole world for
the period 2000-2019. Blue indicates positive migration rates (net in-migration), while red indicates negative
values (net out-migration), from Niva et al. (2023).
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Table A.5: Climate uncertainty and migration

Net migration rate (global dataset) Ever moved (Tanzania NPS)

(1) (2)

SPEI12m 0.038 0.012

(0.127) (0.025)

Climate variability5y –0.122 0.043

(0.645) (0.098)

Climate instability5y 0.596 0.045

(0.557) (0.102)

Region or Household FE Region Household

Year FE Yes Yes

Observations 9,160 11,989

Clusters 458 144

Note: Net migration rate is the net migration rate per 1000 inhabitants in each region, where positives value

indicates net in-migration and negative values net out-migration. Ever moved is a binary variable equal

to 1 if the household relocated between survey waves. SPEI12m is the average SPEI value over the past

12 months aggregated at the region (admin 1) level for column (1) and at the district (admin 2) level for

column (2). Climate controls include yearly SPEI values for the last 5 years, excluding the last 12 months.

Climate variability5y is the standard deviation of last 5 years’ SPEI values. Climate instability5y is the average

absolute difference in SPEI over the last 5 years, residualized on Climate variability5y. Standard errors are

clustered at the region (admin 1) level for column (1) and at the district (admin 2) level for column (2). *

p<0.1, ** p<0.05, *** p<0.01.
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